Multiclass SVM Loss

Multiclass SVM Loss

ย 

๊ฐœ๋…

ย 
๐Ÿฅ‘
: ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ํ†ตํ•ด ์˜ˆ์ธกํ•œ ๊ฐ ํด๋ž˜์Šค ๋ณ„ score : ํ•ด๋‹น ํด๋ž˜์Šค์˜ ์ •๋‹ต score : Safty Margin (์˜ˆ์ธก ๊ฐ’๊ณผ ์ •๋‹ต ๊ฐ’์— ๋Œ€ํ•œ ์ƒ๋Œ€์ ์ธ ์ฐจ์ด๋ฅผ ์ฃผ๊ธฐ ์œ„ํ•ด ์„ค์ •)
ย 
  • ๋ฅผ ํ†ตํ•ด ๊ตฌํ•œ ์ •๋‹ต ์นดํ…Œ๊ณ ๋ฆฌ()์˜ score์™€ ๋‚˜๋จธ์ง€ ์นดํ…Œ๊ณ ๋ฆฌ()์˜ score๋ฅผ ๋น„๊ตํ•œ๋‹ค.
  • ์™€ ์˜ ์ฐจ์ด๊ฐ€ Safety Margin(์•„๋ž˜์˜ ์˜ˆ์‹œ์—์„œ๋Š” 1) ์ด์ƒ์ด๋ผ๋ฉด Loss๋Š” 0. ๊ทธ๋ ‡์ง€ ์•Š์€ ๊ฒฝ์šฐ์—๋Š” Loss๋Š”
  • ๋‚˜๋จธ์ง€ ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋ชจ๋“  ๊ฐ’์˜ ํ•ฉ์ด ํ•œ ์ด๋ฏธ์ง€์˜ Loss์ด๊ณ , Training Data Set์— ์†ํ•œ ์ด๋ฏธ์ง€๋“ค์˜ Loss ๊ฐ’์„ ํ‰๊ท ๋‚ด Data Set์— ๋Œ€ํ•œ Loss๋ฅผ ๊ตฌํ•œ๋‹ค.
ย 
ย 

Example

notion image
ย 
๐Ÿฅ‘
๊ณ ์–‘์ด ์ด๋ฏธ์ง€์˜ ๊ฒฝ์šฐ ์— ์†ํ•˜๋Š” ์ž๋™์ฐจ์™€ ๊ฐœ๊ตฌ๋ฆฌ์—์„œ์˜ score์™€ ๊ฐ๊ฐ ๋น„๊ตํ•˜์—ฌ Loss๋ฅผ ๊ตฌํ•œ๋‹ค. ์ž๋™์ฐจ์™€ ๋น„๊ตํ•œ ๊ฒฝ์šฐ (5.1)์—์„œ (3.2)๋ฅผ ๋บด๊ณ  1๋ฅผ ๋”ํ•˜๋ฉด 2.9 ๊ฐ’์„ ์–ป๊ฒŒ๋˜๊ณ , ํ•จ์ˆ˜ ๊ฐ’์—์„œ ์ตœ์ข… 2.9์˜ ๊ฐ’์„ ์–ป๋Š”๋‹ค. ๊ฐœ๊ตฌ๋ฆฌ์™€ ๋น„๊ตํ•œ ๊ฒฝ์šฐ score ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ๊ตฌํ•˜๋ฉด -3.9 ๊ฐ’์ด ๋‚˜์˜ค๊ณ  ์ด ๋•Œ ํ•จ์ˆ˜ ๊ฐ’์€ 0์ด ๋œ๋‹ค. ์ž๋™์ฐจ์™€ ๋น„๊ตํ•˜์—ฌ ์–ป์€ 2.9 ๊ฐ’๊ณผ ๊ฐœ๊ตฌ๋ฆฌ์™€ ๋น„๊ตํ•˜์—ฌ ๊ตฌํ•œ 0 ๊ฐ’์„ ๋”ํ•ด ๊ณ ์–‘์ด ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์ตœ์ข… Loss๋Š” 2.9๊ฐ€ ๋‚˜์˜จ๋‹ค.
ย 
notion image
ย 
๐Ÿฅ‘
๋‚˜๋จธ์ง€ ๋‘๊ฐœ์˜ ์‚ฌ์ง„์— ๋Œ€ํ•ด์„œ๋„ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ Loss๋ฅผ ๊ตฌํ•œ๋‹ค์Œ, ๊ฐ Loss ๊ฐ’์„ ๋”ํ•˜๊ณ  ํด๋ž˜์Šค ์ˆ˜ ๋งŒํผ ๋‚˜๋ˆ„๋ฉด ์ตœ์ข…์ ์œผ๋กœ ์ด Data Set์— ๋Œ€ํ•ด์„œ 5.27์ด๋ผ๋Š” Loss ๊ฐ’์„ ์–ป๊ฒŒ๋œ๋‹ค.
ย 
ย 
ย 
ย