GAN์„ ํ™œ์šฉํ•œ ๋…ธํ™” ์˜ˆ์ธก ๋ชจ๋ธ
๐Ÿง“

GAN์„ ํ™œ์šฉํ•œ ๋…ธํ™” ์˜ˆ์ธก ๋ชจ๋ธ

Created
Mar 6, 2023
Editor
๐Ÿ“Œ
๋…ผ๋ฌธ ์ œ๋ชฉ | Prediction of Face Age Progression with Generative Adversarial Networks ์ €์ž | Neha Sharma, Reecha Sharma, Neeru Jindal ์ผ์‹œ | 2023.02.19
ย 
50๋Œ€, 60๋Œ€, 70๋Œ€๊ฐ€ ๋˜์—ˆ์„ ๋•Œ ์–ด๋–ค ๋ชจ์Šต์ผ์ง€ ๊ถ๊ธˆํ•˜์ง€ ์•Š์œผ์‹ ๊ฐ€์š”? ํ˜น์€ ์—ฐ์ธ์ด๋‚˜ ๋ฐฐ์šฐ์ž๊ฐ€ ๋ฏธ๋ž˜์— ์–ด๋–ค ๋ชจ์Šต์œผ๋กœ ํ•จ๊ป˜ํ• ์ง€ ์•Œ๊ณ  ์‹ถ์ง€ ์•Š์œผ์‹ ๊ฐ€์š”? ์ด์ œ๋Š” AI ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ƒ๋ฌผํ•™์ ์ธ ๋…ธํ™” ์–‘์ƒ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ ์•ฑ์—์„œ ๋…ธํ™” ์˜ˆ์ธก ํ…Œ์ŠคํŠธ๊ฐ€ ๋งŒ์—ฐํ•œ ๊ฐ€์šด๋ฐ ์–ด๋–ป๊ฒŒ AI ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ์ด ์ด๋ฏธ์ง€๋ฅผ ์˜ˆ์ธกํ•˜๋Š”์ง€ ์•Œ์•„๋ด…์‹œ๋‹ค.
์‹œ๊ฐ„์ด ๋ถ€์กฑํ•˜๋‹ค๋ฉด ๐Ÿ‘‰ย ์ธ์Šคํƒ€ ๊ฒŒ์‹œ๊ธ€ ๋งํฌ
ย 
ย 

Abstract


Face Age Progression์˜ ๋ชฉ์ ์€ ํ˜„์žฌ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹œ๊ฐ„์ด ํ˜๋Ÿฌ ๋‚˜์ด๊ฐ€ ๋” ๋“ค์—ˆ์„ ๋•Œ ์–ผ๊ตด์ด ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๊ฒŒ ๋ ์ง€ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐœ์ธ์˜ ๊ณ ์œ ํ•œ ์‹๋ณ„ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ ์†์—์„œ ํ˜„์žฌ Face Aging์€ ์—„์ฒญ๋‚œ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด์˜ Face Age Progression ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ์ถฉ๋ถ„ํ•˜์—ฌ ๋…ธํ™”๋œ ์–ผ๊ตด ์‚ฌ์ง„ ์ถœ๋ ฅ์ด ๋ถ€์ž์—ฐ์Šค๋Ÿฝ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ์—ฐ๊ตฌ์ž๋“ค์€ UTKFace, CACD, FGNET, IMDB-WIKI, CelebA ์ด 5๊ฐœ์˜ ๊ณต๊ณต ๋ฐ์ดํ„ฐ ์…‹(Publicly Datasets)์„ ์ด์šฉํ•˜์—ฌ AttentionGAN๊ณผ SRGAN์œผ๋กœ ์ •ํ™•ํ•œ Aged Faces๋ฅผ ์ถœ๋ ฅํ•˜๋ ค๊ณ  ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
ย 

Keywords

๐Ÿ’ก
Generative Adversarial Networks(GANs)
์ƒ์„ฑ ๋ชจ๋ธ์˜ ํ•œ ์ข…๋ฅ˜๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์ƒ์„ฑ์ž(Generator)์™€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ํŒ๋ณ„์ž(Discriminator)๊ฐ€ ๊ฒฝ์Ÿํ•˜๋ฉด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
ย 
๐Ÿ’ก
Face Age Progression
Face Age Progression์˜ ๋ชฉํ‘œ๋Š” ํ˜„์žฌ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ๋ฏธ๋ž˜์— ๋‚˜์ด๊ฐ€ ๋“ค์—ˆ์„ ๋•Œ ์–ด๋– ํ•œ ๋ชจ์Šต์ผ์ง€ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
ย 
๐Ÿ’ก
Face Super-Resolution
Face Super-Resolution(FSR)์€ ์ €ํ•ด์ƒ๋„์˜ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ๊ณ ํ•ด์ƒ๋„๋กœ ๋†’์ด๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค.
ย 
๐Ÿ’ก
Age Estimation
์ƒ์ฒด ์ธ์‹(Biometric Features)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ๋žŒ์˜ ๋‚˜์ด๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.
ย 
ย 

1. Introduction


์ธ๊ฐ„์˜ ๊ณ ์œ ํ•œ ์ •์ฒด์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๋‹ค์–‘ํ•œ ์—ฐ๋ น๋Œ€์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์–ผ๊ตด์˜ ๋ชจ์Šต(์–ผ๊ตด ํ˜•์ƒ, ํ”ผ๋ถ€ ๊ฒฐ, ํ”ผ๋ถ€์ƒ‰ ๋“ฑ)์€ โ€œ์‚ถ์˜ ์ง„๋ณดโ€์— ๋”ฐ๋ผ์„œ ๋ณ€ํ™”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–ผ๊ตด์€ ๊ฐœ์ธ์—๊ฒŒ ์—„์ฒญ๋‚œ ์ธ์ฆ(Authentication)๊ณผ ๋ณด์•ˆ(Security)์˜ ๊ธฐ๋ฐ˜์ด ๋ฉ๋‹ˆ๋‹ค.
๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— Face Age Progression์€ ํ˜„์žฌ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, ์ด ๊ธฐ์ˆ ์€ ๋ฒ• ์ง‘ํ–‰ ๊ธฐ๊ด€์—์„œ ๋…ธํ™” ์ „ํ›„ ์‚ฌ์ง„์„ ๋งŒ๋“ค๊ฑฐ๋‚˜ ์ „์ž ์ƒ๊ฑฐ๋ž˜ ํ”Œ๋žซํผ๊ณผ ๊ฐ™์€ ์•ˆ๋ฉด ๋ถ„์„ ๋“ฑ์„ ํ†ตํ•ด ์‹ค์ข… ์•„๋™์ด๋‚˜ ์‹ค์ข…์ž๋ฅผ ์ฐพ๋Š”๋ฐ ๋งŽ์ด ์“ฐ์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠน์ • ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ๋žŒ์„ ์‹๋ณ„ํ•˜๋Š” ์ƒ์ฒด ์ธ์‹ ์‹œ์Šคํ…œ์—์„œ๋„ ์–ผ๊ตด์€ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ์‹ ์ฒด ๋ถ€์œ„์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์กฐ๋ช…, ์„ฑ์žฅ์— ๋”ฐ๋ฅธ ์–ผ๊ตด์˜ ๋ณ€ํ™” ๋•Œ๋ฌธ์— ์–ผ๊ตด ๋…ธํ™” ๊ณผ์ •(Face Age Progression)์€ ์•„์ง ์–ด๋ ค์šด ์ž‘์—…์— ์†ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ฝ”๋กœ๋‚˜19 ๋Œ€์œ ํ–‰์œผ๋กœ ์ ‘์ด‰์„ ํ†ตํ•œ ๊ฐ์—ผ์„ ์ตœ์†Œํ™”ํ•˜๊ณ ์ž ์ง€๋ฌธ์ด ์žˆ์–ด์•ผ ํ•˜๋Š” ์ƒ์ฒด ์ธ์‹ ์‹œ์Šคํ…œ ๋Œ€์‹  ์–ผ๊ตด ์ธ์‹ ์‹œ์Šคํ…œ์ด ์ ๊ทน ๋„์ž…๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
Prediction of face age progression with generative adversarial networks
Prediction of face age progression with generative adversarial networks
ย 

1.1. Face Age Progression with GANs

์ด๋ฏธ์ง€๋ฅผย ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ย ๋˜ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€๋ฅผย ์ถœ๋ ฅ์œผ๋กœ ๋ฐ˜ํ™˜ํ•˜๋Š” ํƒœ์Šคํฌ๋ฅผ Image-to-Image Translation์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. GAN์€ Image-to-Image Translation, Text-to-Speech Generation ๋“ฑ ๋งŽ์€ ๋ถ„์•ผ์—์„œ ์ธ์ƒ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•ด๋‚ผ ์ˆ˜ ์žˆ์„ ๋งŒํผ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜๋Š” ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ GAN์„ ์‚ฌ์šฉํ•œ ์–ผ๊ตด ๋…ธํ™” ๊ณผ์ •(Face Age Progression)์€ ์–ผ๊ตด ์‹๋ณ„ ์‹œ์Šคํ…œ(Facial Verification System)์—์„œ ๋งŽ์€ ์ฃผ๋ชฉ์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ GAN์˜ ๊ฐ€์žฅ ํฐ ๋‹จ์ ์€ ๊ฐ€์งœ ๋ฏธ๋””์–ด ์ฝ˜ํ…์ธ ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๋ฐ์—๋„ ์‚ฌ์šฉ๋œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์—ฐ๊ตฌ์ž๋“ค์€ ์ดˆํ•ด์ƒ๋„(Super-Resolution) ์–ผ๊ตด ๋…ธํ™”์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๊ณ  ํ•ด๋‹น ๋…ผ๋ฌธ์˜ ์ฃผ๋œ ๊ธฐ์—ฌ ๋ฐฉ์•ˆ(Main Contributions)์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
  • AttentionGAN๊ณผ SRGAN์„ ํ˜ผํ•ฉํ•˜์—ฌ Face Age Progression์„ ์ง„ํ–‰ํ•˜์˜€๊ณ  AttentionGAN์ด ์ฃผ์š”ํ•œ ์—ญํ• ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ์ •๊ทœ ํ‘œํ˜„์‹ ํ•„ํ„ฐ(Regex Filter)๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํ•ฉ์„ฑ๋œ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ์„ ํƒํ•˜์—ฌ ํ›ˆ๋ จ ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ๋„ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์ธ UTKFace, CACD, IMDB-WIKI, CelebA, FGNET Datasets๋กœ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
  • ํฌ์ฆˆ, ํ‘œ์ •, ๋ฉ”์ดํฌ์—…, ์กฐ๋ช… ๋“ฑ ๋‹ค์–‘ํ•œ ์š”์ธ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜์˜€์Šต๋‹ˆ๋‹ค.
ย 
ย 

2. Related Work


๊ธฐ์กด ์–ผ๊ตด ๋…ธํ™” ๊ณผ์ •(Face Age Progression) ์—ฐ๊ตฌ๋Š” ์–ผ๊ตด ์„ฑ์žฅ(Geometric Growth of Face), ์ฃผ๋ฆ„, ์–ผ๊ตด ํ•˜์œ„ ์˜์—ญ(Face Sub-Reagions), ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ  ๋“ฑ ์–ผ๊ตด ์†์„ฑ(Facial Attributes)์— ์ค‘์ ์„ ๋‘๊ณ  ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•ด ์™”์—ˆ์Šต๋‹ˆ๋‹ค. ๋…ธํ™” ๊ณผ์ •(Aging Process)์—๋Š” ๋‹ค์–‘ํ•œ ์–ผ๊ตด ์ด๋ฏธ์ง€ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜๋ ค๋Š” โ€œAn Appearance-based Methodโ€ ๊ธฐ๋ฐ˜์˜ ๊ณ ์œ ๋ฉด(Eigenfaces)๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๊ณ  ์•Œ๋ ค์กŒ์Šต๋‹ˆ๋‹ค. ๊ณ ์œ ๋ฉด์ด๋ž€ ๊ฐ ์–ผ๊ตด์˜ ์ด๋ฏธ์ง€๋ฅผ ์ฝ”๋”ฉํ•˜๊ณ  ๋น„๊ตํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ •๋ณด์ž…๋‹ˆ๋‹ค. ๊ทธ ์ดํ›„ ๋”ฅ๋Ÿฌ๋‹์€ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ์—„์ฒญ๋‚œ ์ฃผ๋ชฉ์„ ๋ฐ›๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
ํŠนํžˆ, GAN์˜ ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๋ฐฉ๋ฒ• ๋ฐ GAN์˜ ์‹ค์ œ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ ์ ์šฉ ๋ฐฉ๋ฒ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. GAN์˜ ์ฃผ์š” ๋ชฉํ‘œ๋Š” ์ƒ์„ฑ์ž์˜ ๋ถ„ํฌ๋ฅผ ํš๋“ํ•˜์—ฌ ์‹ค์ œ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ๊ทผ์ ‘ํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, ์ด๋•Œ ์ง„ํ–‰๋˜๋Š” ์ˆœํ™˜ ์ผ๊ด€์„ฑ ์†์‹ค(Cycle Consistency Loss)๋Š” ์ด๋ฏธ์ง€์˜ ์ •์ฒด์„ฑ(Identity)์„ ์œ ์ง€ํ•˜๋ฉด์„œ ํ•ฉ์„ฑ๋œ ์ด๋ฏธ์ง€์—์„œ ์›๋ž˜ ์ž…๋ ฅ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์‹œ ์–ป์œผ๋ ค๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. GAN์ด ์‚ฌ์šฉ๋˜๋Š” ์‚ฌ๋ก€๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
GAN์ด ํ™œ์šฉ๋˜๋Š” Image-to-Image Conversion๊ณผ Pix2Pix๋Š” ์œ„์˜ ์ด์œ ๋กœ ์Œ์„ ์ด๋ฃฌ ๋ฐ์ดํ„ฐ ์„ธํŠธ(Paired Dataset)๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ด๋ฏธ์ง€ ํ•ฉ์„ฑ์— ์‚ฌ์šฉ๋˜๋Š” Spatial Fusion GAN์€ Geometry Synthesizer์™€ Appearance Synthesizer๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฐ ๋„๋ฉ”์ธ์—์„œ ์ธ์œ„์ ์ด์ง€ ์•Š์€ โ€œํ˜„์‹ค์ ์ธโ€ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ทธ ๊ณผ์ •์—์„œ ๊ธฐ์กด Face Image ํŠน์ง•์„ ๋ณด์กดํ•˜๊ธฐ ์œ„ํ•ด Identity Loss๋ฅผ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•ฉ์„ฑ๋œ ๋ง๋ง‰ ์ด๋ฏธ์ง€์™€ ๋ถ„ํ• ๋œ(Segmented) ๋ง๋ง‰ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ MI-GAN ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ โ€œ์‚ฌ์‹ค์ โ€์œผ๋กœ ํ•ฉ์„ฑํ–ˆ๋‹ค๋Š” ์ ์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฅธ ๋ชจ๋ธ๋“ค์— ๋น„ํ•ด ์œ ์˜๋ฏธํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜๊ธฐ๋„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
ย 

3. The Proposed Work (Algorithm)


ํ•ด๋‹น ๋…ผ๋ฌธ์—์„œ ์ง„ํ–‰๋œ ์—ฐ๊ตฌ๋Š” ์ž…๋ ฅ๋œ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ๊ถ๊ทน์ ์œผ๋กœ ๋…ธํ™” ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ ๊ณผ์ •์—์„œ ํ•„ํ„ฐ ๊ณผ์ •(Filter Process)์€ ๊ณ„์‚ฐ ์‹œ๊ฐ„(Computation Time)๊ณผ ์ €์žฅ ๊ณต๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์ดˆ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ ์—์ง€ ํ–ฅ์ƒ(Edge Enhancement)์„ ์ง„ํ–‰ํ•˜๋Š” ์ด๋ฏธ์ง€ ์ƒคํ”„๋‹(Image Sharpening)์€ SRGAN์— ๋” ๋ช…ํ™•ํ•œ ์ด๋ฏธ์ง€๋ฅผ Inputํ•˜๊ธฐ ์œ„ํ•จ์ž…๋‹ˆ๋‹ค.
์œ„ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ ์„ธ ๋‹จ๊ณ„๊ฐ€ ์ง„ํ–‰๋ฉ๋‹ˆ๋‹ค. UTKFace์™€ CACD๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค. Inputํ•˜๋Š” ์–ผ๊ตด ์ด๋ฏธ์ง€๋Š” ๋จผ์ € UTKFace ๋ฐ CACD ๋ฐ์ดํ„ฐ ์…‹์—์„œ RGB 3์›์ƒ‰์˜ ์ด๋ฏธ์ง€๋งŒ์„ ์–ป๊ธฐ ์œ„ํ•ด ์ „์ฒ˜๋ฆฌ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ ์ดํ›„ 0โ€“20, 21โ€“40, 41โ€“60, 60+์˜ ๋„ค ๋ถ€๋ฅ˜ ๋‚˜์ด ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฆฌํ•˜๊ณ  Inputํ•  Training, Test, Validation ๋ฐ์ดํ„ฐ ์…‹๊ณผ ์‹คํ—˜ ๊ฒฐ๊ณผ ๋„์ถœ์„ ์œ„ํ•œ Target ์ด๋ฏธ์ง€๋ฅผ ์ค€๋น„ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ๋Š” 100ร—100 ํฌ๊ธฐ๋กœ ์กฐ์ ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
ย 
๐Ÿ’ก
Stage 1
notion image
์ „์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋Š” ์–ผ๊ตด ๋…ธํ™” ๊ณผ์ •(Face Age Progression)์„ ํ•˜๊ธฐ ์œ„ํ•ด Image-to-Image Conversion์„ ์ง„ํ–‰ํ•˜๋Š” AttentionGAN์˜ ์ƒ์„ฑ์ž G์—๊ฒŒ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. ์ƒ์„ฑ์ž๋Š” ๋†’์€ ํ€„๋ฆฌํ‹ฐ์˜ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ์ธ์˜ ์–ผ๊ตด ์ •์ฒด์„ฑ์„ ์œ ์ง€ํ•˜๋ฉฐ ๋ฐฐ๊ฒฝ๊ณผ ์ „๊ฒฝ ์ •๋ณด๋ฅผ ์Šต๋“ํ•ฉ๋‹ˆ๋‹ค. AttentionGAN์˜ ๊ณ ์œ ํ•œ ํŠน์ง•์€ ์ƒ์„ฑ์ž๊ฐ€ ํ•„์š”ํ•œ ์ด๋ฏธ์ง€์˜ ์ „๊ฒฝ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉด์„œ ๋™์‹œ์— ์–ดํ…์…˜ ๋งˆ์Šคํฌ(Attention Mask)์™€ ์ฝ˜ํ…์ธ  ๋งˆ์Šคํฌ(Content Mask)์˜ ๋„์›€์œผ๋กœ Input ์ด๋ฏธ์ง€์˜ ๋ฐฐ๊ฒฝ์„ ๋ณด์กดํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
๊ทธ๋Ÿฌ๋‚˜ Input ์ด๋ฏธ์ง€๋Š” Sub-Module Parametric Sharing Encoder์ธ GE, Content Mask Generator์ธ GC, ๊ทธ๋ฆฌ๊ณ  Attention Mask Generator์ธ GA์—๊ฒŒ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ p-1 Content Masks๋Š” ์ƒ์„ฑ์ž GC์— ์˜ํ•ด ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ „๊ฒฝ Attention Masks์™€ ๋ฐฐ๊ฒฝ ์–ดํ…์…˜ ๋งˆ์Šคํฌ(Attention Mask)๋Š” ์ƒ์„ฑ์ž GA์— ์˜ํ•ด์„œ ๋™์‹œ์— ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค. Attention Mask(A)์€ Content Mask(C), Input ์–ผ๊ตด ์ด๋ฏธ์ง€(u)์™€ ๊ณฑํ•ด์ง€๊ณ  G(u)์ธ Target Face Aged Image๋ฅผ ๋งŒ๋“œ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
ย 
์ˆœํ™˜ ์ผ๊ด€์„ฑ ์†์‹ค(Cycle Consistency Loss) ๊ณผ์ •์—์„œ๋Š” ์ƒ์„ฑ๋œ ๋…ธํ™” ์ด๋ฏธ์ง€๋Š” ๋‹ค๋ฅธ ์ƒ์„ฑ์ž F์—๊ฒŒ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ F ์ƒ์„ฑ์ž๋„ ๋น„์Šทํ•œ ๋ฐฉ์‹์œผ๋กœ ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€์™€ ํ•จ๊ป˜ ์ „๊ฒฝ์˜ Content Mask์™€ Attention Mask๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ƒ์„ฑ์ž G์™€ F๊ฐ€ ๋งŒ๋“  ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ํ˜ผํ•ฉํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์‹œ ์ƒ์„ฑ์ž F์—์„œ Two Masks๋Š” ์ด๋ฏธ์ง€ ์ •๋ณด๋ฅผ ๋ณด์กดํ•˜๊ณ  ์ตœ์†Œํ•œ์˜ ์†์‹ค๋งŒ ์žˆ๋Š” ์ฑ„ Input Image๋ฅผ ๋‹ค์‹œ ์ถ”์ถœํ•จ์œผ๋กœ์จ ์ด๋ฏธ์ง€๋ฅผ ๋ณด์กดํ•ฉ๋‹ˆ๋‹ค. ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€ G(u)๋ฅผ ์›๋ž˜ Input Image์ธ u๋กœ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
F(G(u))๋Š” ๊ธฐ์กด ์ด๋ฏธ์ง€์ธ u์™€ ๋งค์šฐ ์œ ์‚ฌํ•ด์•ผ ํ•˜๋Š” ์žฌ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€์ž…๋‹ˆ๋‹ค. F๋Š” ์ƒ์„ฑ์ž G์™€ ์œ ์‚ฌํ•œ Three Subnets Parametric Sharing Encoder์ธ FE, Attention Mask Generator์ธ FA, Content Mask Generator์ธ FC๋กœ ๊ตฌ์„ฑ๋œ ์ƒ์„ฑ์ž์ž…๋‹ˆ๋‹ค. FC๋Š” p-1 Content Mask๋ฅผ, FA๋Š” ์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ์˜ p Attention Mask๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ๊ทธ ์ดํ›„ Two Masks๋Š” ์žฌ์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ์œ„์˜ ์ˆ˜์‹์ฒ˜๋Ÿผ ๊ณฑํ•ด์ง‘๋‹ˆ๋‹ค.
ย 
AttentionGAN Scheme II์˜ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์ˆ˜ํ•™์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Lgan์€ GAN Loss์ด๋ฉฐ Lcycle์€ Cyclic Loss์ด๊ณ  Lid๋Š” Identity Preserving Loss, ๋žŒ๋‹ค ๊ด€๋ จ ๋ถ€๋ถ„์€ ํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค.
ย 
ย 
๐Ÿ’ก
Stage 2 : AttentionGAN์˜ ๊ฒฐ๊ณผ๋ฌผ์ด ์ •๊ทœ์‹ ํ•„ํ„ฐ(Regex Filter)๋ฅผ ์ ์šฉํ• ์ง€ ์—ฌ๋ถ€๊ฐ€ ๊ฒฐ์ •๋˜๋Š” ์กฐ๊ฑด๋ถ€ ๋ธ”๋ก(Conditional Block)์— ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค.
์กฐ๊ฑด๋ถ€ ๋ธ”๋ก ์ถœ๋ ฅ์ด Yes์ด๋ฉด ์ •๊ทœ์‹ ํ•„ํ„ฐ๋Š” AttentionGAN์—์„œ ํ•ฉ์„ฑ๋œ ์–ผ๊ตด ๋…ธํ™” ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. AttentionGAN์˜ Output์€ ํ•ฉ์„ฑ๋œ ์–ผ๊ตด ์‚ฌ์ง„, ์–ดํ…์…˜ ๋งˆ์Šคํฌ(Attention Mask)์™€ ์ฝ˜ํ…์ธ  ๋งˆ์Šคํฌ(Content Mask)์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ •๊ทœ์‹ ํ•„ํ„ฐ ๊ณผ์ •์„ ์ถ”๊ฐ€ํ•˜๋ฉด SRGAN ํ›ˆ๋ จ์— ํ•„์š”ํ•œ ๊ณ„์‚ฐ ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•„ํ„ฐ๋ง๋œ ํ•ฉ์„ฑ ์–ผ๊ตด ์ด๋ฏธ์ง€๋Š” ์—์ง€ ํ–ฅ์ƒ(Edge Enhancement)์ด๋ผ๋Š” ์ด๋ฏธ์ง€ ์ƒคํ”„๋‹(Image Sharpening) ๊ณผ์ •์„ ๊ฑฐ์นœ ๋’ค SRGAN์— Input ๋ฉ๋‹ˆ๋‹ค. SRGAN์€ ์ฃผ๋กœ ๊ฐ์ฒด์˜ ๋ชจ์–‘, ์งˆ๊ฐ, ์ƒ‰์ƒ์„ ํ•™์Šตํ•˜๊ณ  ์ด๋ฏธ์ง€์˜ A Few Sharp Edges๋ฅผ ์ˆ˜์ •ํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์„ ๋ช…ํ™”๋œ ์ด๋ฏธ์ง€๋Š” SRGAN์— ์ฃผ์–ด์ง€๊ณ  ํ•„ํ„ฐ ๊ณผ์ •์„ ๊ฑฐ์นœ ๋•๋ถ„์— ๋ชจ๋ธ ํ›ˆ๋ จ์€ 2์‹œ๊ฐ„ ๋งŒ์— ์™„๋ฃŒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
ย 
์กฐ๊ฑด๋ถ€ ๋ธ”๋ก ์ถœ๋ ฅ์ด No์ด๋ฉด AttentionGAN์˜ output์€ ๋ฐ”๋กœ SRGAN Training์œผ๋กœ ์ด์–ด์ง‘๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด ๊ฒฝ๋กœ๋กœ ์ง„ํ–‰ํ–ˆ์„ ๋•Œ ์—ฌ๋Ÿฌ ์›์น˜ ์•Š๋Š” ์ด๋ฏธ์ง€๋“ค(Content and Attention Masks of Aged Faces which are not required for SRGAN Training)์ด ์ œ๊ฑฐ๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ํ›ˆ๋ จ ์‹œ๊ฐ„์— 26์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ตœ์ข… ์ถœ๋ ฅ๋ฌผ๋กœ ๋…ธํ™” ์ด๋ฏธ์ง€(Tace Aged Images)๊ฐ€ ๋‚˜์™€์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
ย 
๐Ÿ’ก
Stage 3 : ์ตœ์ข… Output ์ด๋ฏธ์ง€๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด Image Sharpening์ด ์ง„ํ–‰๋˜๋Š” SRGAN ํ›ˆ๋ จ(๊ณ ํ’ˆ์งˆ ํ•ฉ์„ฑ ์ด๋ฏธ์ง€ ์ƒ์„ฑ)๊ณผ์ •์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํ›ˆ๋ จ ์‹œ๊ฐ„๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณ„์‚ฐ ๋ณต์žก๋„๊นŒ์ง€ ์ค„์ธ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Content and Attention Masks๋ฅผ SRGAN์— ์ง์ ‘์ ์œผ๋กœ ์ฃผ์–ด์ง€๋ฉด ์—ญํšจ๊ณผ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.
SRGAN์—์„œ ์ž”์—ฌ ๋ธ”๋ก(Residual Blocks)์€ ๋ฒ ์ด์Šค ๋ชจ๋ธ ํ™œ์„ฑํ™”์— ๊ธฐ์—ฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–ผ๊ตด ์ด๋ฏธ์ง€์˜ ์‹œ๊ฐ์ ์ธ ํ€„๋ฆฌํ‹ฐ๋ฅผ ํ–ฅ์ƒํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. SRGAN์„ ํ›ˆ๋ จํ•˜๋Š” ๋™์•ˆ ์ž…๋ ฅ๋œ ๊ณ ํ•ด์ƒ๋„ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ์ €ํ•ด์ƒ๋„ ์–ผ๊ตด ์ด๋ฏธ์ง€๋กœ ๋‹ค์šด ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ์ดˆํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ํŒ๋ณ„์ž(Discriminator)๋Š” ํ•ฉ์„ฑ๋œ ์ดˆํ•ด์ƒ๋„ ์ด๋ฏธ์ง€์™€ ์‹ค์ œ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ๊ตฌ๋ณ„ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ ์ง€๊ฐ ์†์‹ค(Perceptual Loss : GAN์—์„œ ์‚ฌ์šฉ๋˜๋Š” loss ์ค‘ ํ•˜๋‚˜๋กœ MAE, MSE๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋งŒ๋“ค์–ด์ง„ ์†์‹คํ•จ์ˆ˜)๋Š” ์ฝ˜ํ…์ธ  ์†์‹ค(Content Loss : ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ๋Œ€์ƒ ์ด๋ฏธ์ง€์˜ ํ”ฝ์…€ ๋‹จ์œ„์˜ ์ฐจ์ด)์™€ Adversarial Loss(์ƒ์„ฑ์ž๋กœ ํ•˜์—ฌ๊ธˆ ์ง„์งœ์ฒ˜๋Ÿผ ๋ณด์ผ ์ •๋„๋กœ ์‚ฌ์‹ค์ ์ธ ๊ฐ€์งœ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋„๋ก ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜)์˜ ๊ฐ€์ค‘ ํ•ฉ๊ณ„์ด๊ณ  ์ˆ˜์‹์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
Lp๋Š” Perceptual Loss, lc๋Š” Content Loss, 10โ€“3 ladv์€ Adversarial Loss์ž…๋‹ˆ๋‹ค. Content Loss์€ VGG Loss๊ณผ MSE Loss๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ๋จผ์ € MSE Loss๋Š” ์ดˆํ•ด์ƒ๋„ ์ƒ์„ฑ ์ด๋ฏธ์ง€์™€ ์›๋ณธ ์ด๋ฏธ์ง€ ์‚ฌ์ด์˜ ํ”ฝ์…€ ๋‹จ์œ„ ์˜ค๋ฅ˜์ž…๋‹ˆ๋‹ค. VGG Loss๋Š” VGG19 ๋„คํŠธ์›Œํฌ ์ƒ์—์„œ m๋ฒˆ์งธ Maxpool ๋ ˆ์ด์–ด ์ด์ „์˜ n์ฐจ ์ปจ๋ณผ๋ฃจ์…˜์— ์˜ํ•ด ์ƒ์„ฑ๋œ Feature Map์ž…๋‹ˆ๋‹ค. ฯ† (m, n)๋กœ ํ‘œ๊ธฐ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  Adversarial Loss์€ ์ƒ์„ฑ์ž(Discriminator)์˜ ์ผ๋ฐ˜์ ์ธ Training Samples Probabilites๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ladv์— ๊ด€ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค.
I lr ์€ ์ €ํ•ด์ƒ๋„์˜ Input Image์ด๊ณ , q = 1, . . ., Q๋Š” Training Samples, Log๋ฅผ ์ทจํ•ด์ค€ ๊ด„ํ˜ธ ์•ˆ์˜ ์‹์€ ์žฌ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€๊ฐ€ ๊ธฐ์กด์˜ ์ดˆํ•ด์ƒ๋„ ์ด๋ฏธ์ง€์ผ ํ™•๋ฅ ์ž…๋‹ˆ๋‹ค.
ย 
ย 

4. Conclusion


์ดˆ๊ณ ํ•ด์ƒ๋„ GAN์ธ AttentionGAN์ด โ€œ๊ทธ๋Ÿด๋“ฏํ•œโ€ ์ดˆ๊ณ ํ•ด์ƒ๋„ ๋…ธํ™” ์ด๋ฏธ์ง€(Super-Resolution Face Aged Images)๋ฅผ ์–ป๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์‹ค์ œ ์ด๋ฏธ์ง€์™€ ์‹œ๊ฐ„์ด ํ˜๋Ÿฌ ๋‚˜์ด๊ฐ€ ๋“ค์—ˆ์„ ๋•Œ์˜ ์ด๋ฏธ์ง€ ๊ฐ„ ์˜ค์ฐจ์œจ์€ 0.001%์— ๋ถˆ๊ณผํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ ์šฐ์ˆ˜ํ•œ ์ˆ˜์น˜๋ฅผ ์–ด๋–ป๊ฒŒ ์–ผ๊ตด ๋…ธํ™” ๊ณผ์ •(Face Age Progression)์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ธ์ง€๋Š” ๋ฏธ๋ž˜ ์„ธ๋Œ€์— ๋‹ฌ๋ ค ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
notion image
ย 

5. ๋…ผ๋ฌธ์˜ ํ™œ์šฉ ๊ฐ€์น˜


๋”ฅ๋Ÿฌ๋‹์€ ํ—ฌ์Šค ์ผ€์–ด ์‚ฐ์—…์ด ๋ฐœ์ „ํ•˜๋Š” ๋ฐ ๋งŽ์€ ๋„์›€์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, ์–ผ๊ตด ์ธ์‹์€ ์ •๊ธฐ์ ์œผ๋กœ ํ™˜์ž์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋„๋ก ์›๊ฒฉ ์ปจ์„คํŒ…์„ ํ•˜๊ฑฐ๋‚˜ ๊ฑด๊ฐ• ๋ณดํ—˜ ID๋ฅผ ๋งŒ๋“œ๋Š” ํ† ๋Œ€๊ฐ€ ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์–ผ๊ตด ๋…ธํ™” ๊ณผ์ •(Face Age Progression)์€ Banking ๋ถ„์•ผ์—๋„ ์“ฐ์ผ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์ง„ ์—…๋ฐ์ดํŠธ์— ํ•„์š”ํ•œ ๋ฐฉ๋ฌธ์„ ์ค„์ผ ์ˆ˜ ์žˆ์–ด ํŽธ๋ฆฌํ•˜๋‹ค๋Š” ์ ์—์„œ ์•ž์œผ๋กœ ๋งŽ์€ ์„œ๋น„์Šค๋ฅผ ๊ธฐํšํ•˜๋Š” ๋ฐ ๋ฐœํŒ์ด ๋  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
ย 
ย 
ย 
notion image
ย 
ย 
ย 
๐Ÿ“จ
๋ฌธ์˜์‚ฌํ•ญ manager@deepdaiv.com
ย